Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 7 - Functions - Exercise Set 7.3 - Page 427: 20

Answer

Yes, function composition is always associative, so \(\;h \circ (g \circ f) = (h \circ g)\circ f\).

Work Step by Step

## Explanation/Proof Given three functions \[ f: W \to X,\quad g: X \to Y,\quad h: Y \to Z, \] we consider the two compositions: 1. \(\bigl(h \circ (g \circ f)\bigr)(w)\). 2. \(\bigl((h \circ g)\circ f\bigr)(w)\). Pick any \(w \in W\). Then: - **Compute** \(\bigl(h \circ (g \circ f)\bigr)(w)\): \[ (g \circ f)(w) \;=\; g\bigl(f(w)\bigr) \;\in\; Y, \quad\text{so}\quad \bigl(h \circ (g \circ f)\bigr)(w) \;=\; h\bigl((g \circ f)(w)\bigr) \;=\; h\bigl(g(f(w))\bigr). \] - **Compute** \(\bigl((h \circ g)\circ f\bigr)(w)\): \[ f(w) \;\in\; X, \quad\text{so}\quad (h \circ g)\bigl(f(w)\bigr) \;=\; h\bigl(g(f(w))\bigr). \] Hence \[ \bigl((h \circ g)\circ f\bigr)(w) \;=\; h\bigl(g(f(w))\bigr). \] Because both expressions equal \(h\bigl(g(f(w))\bigr)\) for every \(w\in W\), the two composite functions are identical: \[ h \circ (g \circ f) = (h \circ g)\circ f. \] This property—called **associativity**—always holds for function composition, so there is no counterexample.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.