Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 7 - Functions - Exercise Set 7.3 - Page 427: 11

Answer

Because \(H(H(x)) = x\) for all \(x\neq 1\) and the range never hits 1, \(H\) acts as its own inverse on \(\mathbb{R}\setminus\{1\}\). Thus the compositions \[ H \circ H = \mathrm{Id} \quad\text{and}\quad H^{-1} = H \] hold, confirming that \(H\) and \(H^{-1}\) (as given) are indeed inverse functions.

Work Step by Step

We have a function \[ H : \mathbb{R}\setminus\{1\} \;\to\; \mathbb{R}\setminus\{1\}, \quad H(x) \;=\; \frac{x+1}{\,x-1\,}. \] The statement says \(H\) and \(H^{-1}\) are **both** given by that same formula, meaning \(H\) is its own inverse. To verify this, we must check that \[ H\bigl(H(x)\bigr) \;=\; x \quad \text{for all } x \in \mathbb{R}\setminus\{1\}, \] and also confirm that the values never map to 1 (so the expression remains in the codomain \(\mathbb{R}\setminus\{1\}\)). --- ## 1. Show \(H \circ H = \mathrm{Id}\) Let \(y = H(x) = \frac{x+1}{x-1}\). Then 1. Compute \(y + 1\): \[ y + 1 \;=\; \frac{x+1}{\,x-1\,} \;+\; 1 \;=\; \frac{x+1}{\,x-1\,} \;+\; \frac{x-1}{\,x-1\,} \;=\; \frac{(x+1) + (x-1)}{\,x-1\,} \;=\; \frac{2x}{\,x-1\,}. \] 2. Compute \(y - 1\): \[ y - 1 \;=\; \frac{x+1}{\,x-1\,} \;-\; 1 \;=\; \frac{x+1}{\,x-1\,} \;-\; \frac{x-1}{\,x-1\,} \;=\; \frac{(x+1) - (x-1)}{\,x-1\,} \;=\; \frac{2}{\,x-1\,}. \] Hence, \[ H\bigl(H(x)\bigr) \;=\; H(y) \;=\; \frac{\,y+1\,}{\,y-1\,} \;=\; \frac{\tfrac{2x}{x-1}}{\tfrac{2}{x-1}} \;=\; \left(\frac{2x}{\,x-1\,}\right) \Bigl/\! \left(\frac{2}{\,x-1\,}\right) \;=\; \frac{2x}{\,x-1\,}\;\times\;\frac{x-1}{2} \;=\; x. \] Thus \(\bigl(H \circ H\bigr)(x) = x\). This shows \(H\) is indeed its own inverse on the domain \(\mathbb{R}\setminus\{1\}\). --- ## 2. Confirm the Codomain Condition We also need to check that \(H(x)\neq 1\) for all \(x\neq 1\). Suppose for contradiction \[ \frac{x+1}{\,x-1\,} = 1. \] Cross‐multiplying, \[ x+1 = x-1 \quad\Longrightarrow\quad 1 = -1, \] a contradiction. So \(H(x)\neq 1\). Hence \(H(x)\) indeed stays in \(\mathbb{R}\setminus\{1\}\).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.