Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 7 - Functions - Exercise Set 7.3 - Page 427: 10

Answer

Both compositions give the identity on \(\mathbb{R}^+\). Therefore, \(G^{-1}\) is indeed the inverse of \(G\), and they satisfy \[ G \circ G^{-1} = \mathrm{Id}_{\mathbb{R}^+} \quad\text{and}\quad G^{-1} \circ G = \mathrm{Id}_{\mathbb{R}^+}. \]

Work Step by Step

We have the pair of functions \[ G: \mathbb{R}^+ \to \mathbb{R}^+, \quad G(x) = x^2, \] and its proposed inverse \[ G^{-1} : \mathbb{R}^+ \to \mathbb{R}^+, \quad G^{-1}(y) = \sqrt{y}. \] Here \(\mathbb{R}^+\) means the set of all positive real numbers. To verify \(G^{-1}\) is indeed the inverse of \(G\), we must show: 1. \(\bigl(G \circ G^{-1}\bigr)(y) = y\) for all \(y \in \mathbb{R}^+\). 2. \(\bigl(G^{-1} \circ G\bigr)(x) = x\) for all \(x \in \mathbb{R}^+\). --- ## 1. Compute \(\bigl(G \circ G^{-1}\bigr)(y)\) \[ \bigl(G \circ G^{-1}\bigr)(y) \;=\; G\bigl(G^{-1}(y)\bigr) \;=\; G\bigl(\sqrt{y}\bigr) \;=\; (\sqrt{y})^2 \;=\; y. \] This holds for all \(y>0\), so \(G\bigl(G^{-1}(y)\bigr) = y\). --- ## 2. Compute \(\bigl(G^{-1} \circ G\bigr)(x)\) \[ \bigl(G^{-1} \circ G\bigr)(x) \;=\; G^{-1}\bigl(G(x)\bigr) \;=\; G^{-1}(x^2) \;=\; \sqrt{x^2}. \] Since \(x \in \mathbb{R}^+\), we have \(x>0\). Thus \(\sqrt{x^2} = x\). Hence \[ G^{-1}\bigl(G(x)\bigr) = x \] for all \(x>0\).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.