Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 7 - Functions - Exercise Set 7.3 - Page 427: 23

Answer

1. \(\displaystyle g\circ f : a\mapsto w,\; b\mapsto v,\; c\mapsto u.\) 2. \(\displaystyle (g\circ f)^{-1}: w\mapsto a,\; v\mapsto b,\; u\mapsto c.\) 3. \(\displaystyle g^{-1}: v\mapsto x,\; w\mapsto y,\; u\mapsto z.\) 4. \(\displaystyle f^{-1}: y\mapsto a,\; x\mapsto b,\; z\mapsto c.\) 5. \(\displaystyle f^{-1}\circ g^{-1}: u\mapsto c,\; v\mapsto b,\; w\mapsto a.\) 6. \(\displaystyle (g\circ f)^{-1} = f^{-1}\circ g^{-1}.\)

Work Step by Step

Below is a step‐by‐step solution following the given definitions: \(X = \{\,a,b,c\}\) \(Y = \{\,x,y,z\}\) \(Z = \{\,u,v,w\}\) Functions: 1. \(f : X \to Y\) \[ f(a)=y,\quad f(b)=x,\quad f(c)=z. \] 2. \(g : Y \to Z\) \[ g(x)=v,\quad g(y)=w,\quad g(z)=u. \] We want to find: 1. \(g \circ f\) 2. \((g \circ f)^{-1}\) 3. \(g^{-1}\) 4. \(f^{-1}\) 5. \(f^{-1}\circ g^{-1}\) 6. The relationship between \((g \circ f)^{-1}\) and \(f^{-1}\circ g^{-1}\). --- ## 1) Compute \(g \circ f\) \[ (g \circ f)(x) \;=\; g\bigl(f(x)\bigr). \] So for each element of \(X\): \((g \circ f)(a) = g\bigl(f(a)\bigr) = g(y) = w.\) \((g \circ f)(b) = g\bigl(f(b)\bigr) = g(x) = v.\) \((g \circ f)(c) = g\bigl(f(c)\bigr) = g(z) = u.\) Hence \[ g \circ f : X \;\to\; Z \quad\text{is given by}\quad a \mapsto w,\; b \mapsto v,\; c \mapsto u. \] --- ## 2) Find \((g \circ f)^{-1}\) Since \(g \circ f\) is a bijection from \(X\) onto \(Z\), its inverse is a map \(Z\to X\). From \[ (g \circ f)(a) = w,\quad (g \circ f)(b) = v,\quad (g \circ f)(c) = u, \] we invert these pairs: \(w \mapsto a\) \(v \mapsto b\) \(u \mapsto c\) Therefore, \[ (g \circ f)^{-1}(w) = a,\quad (g \circ f)^{-1}(v) = b,\quad (g \circ f)^{-1}(u) = c. \] --- ## 3) Find \(g^{-1}\) We know \(g\colon x\mapsto v,\;y\mapsto w,\;z\mapsto u\). Invert these: \(v \mapsto x\) \(w \mapsto y\) \(u \mapsto z\) Hence \[ g^{-1} : Z \;\to\; Y,\quad g^{-1}(v) = x,\quad g^{-1}(w)=y,\quad g^{-1}(u)=z. \] --- ## 4) Find \(f^{-1}\) Similarly, \(f\colon a\mapsto y,\; b\mapsto x,\; c\mapsto z\). Invert these: \(y \mapsto a\) \(x \mapsto b\) \(z \mapsto c\) Hence \[ f^{-1} : Y \;\to\; X,\quad f^{-1}(y)=a,\quad f^{-1}(x)=b,\quad f^{-1}(z)=c. \] --- ## 5) Compute \(f^{-1}\circ g^{-1}\) This is a map \(Z \to X\). For each element of \(Z\), apply \(g^{-1}\) first, then \(f^{-1}\): 1. \(u \overset{g^{-1}}{\longmapsto} z \overset{f^{-1}}{\longmapsto} c.\) 2. \(v \overset{g^{-1}}{\longmapsto} x \overset{f^{-1}}{\longmapsto} b.\) 3. \(w \overset{g^{-1}}{\longmapsto} y \overset{f^{-1}}{\longmapsto} a.\) So \[ (f^{-1}\circ g^{-1})(u)=c,\quad (f^{-1}\circ g^{-1})(v)=b,\quad (f^{-1}\circ g^{-1})(w)=a. \] --- ## 6) Relationship of \((g \circ f)^{-1}\) and \(f^{-1}\circ g^{-1}\) Comparing the results of Step 2 and Step 5: \((g \circ f)^{-1}(u)=c\) matches \((f^{-1}\circ g^{-1})(u)=c\). \((g \circ f)^{-1}(v)=b\) matches \((f^{-1}\circ g^{-1})(v)=b\). \((g \circ f)^{-1}(w)=a\) matches \((f^{-1}\circ g^{-1})(w)=a\). Thus **they are the same function**. Indeed, a standard theorem says: \[ \boxed{(g \circ f)^{-1} \;=\; f^{-1} \;\circ\; g^{-1}.} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.