Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 7 - Functions - Exercise Set 7.3 - Page 427: 26

Answer

1. Since \(f\) and \(g\) are bijections, their composition \(g \circ f\) is also a bijection. 2. The inverse of \(g \circ f\) exists and is given by \(\,(g \circ f)^{-1} = f^{-1} \circ g^{-1}\).

Work Step by Step

We want to show two things: 1. **\((g \circ f)\) is a bijection** \(\bigl(X \to Z\bigr)\). 2. **Its inverse** is \(\displaystyle (g \circ f)^{-1} = f^{-1} \circ g^{-1}\). Here, \(f : X \to Y\) and \(g : Y \to Z\) are each one-to‐one (injective) and onto (surjective), hence **bijections** with well‐defined inverses \(f^{-1}\) and \(g^{-1}\). --- ## 1. Show \(g \circ f\) is a Bijection ### (a) Injectivity Suppose \((g \circ f)(x_1) = (g \circ f)(x_2)\). That is, \[ g\bigl(f(x_1)\bigr) \;=\; g\bigl(f(x_2)\bigr). \] Because \(g\) is injective, we must have \[ f(x_1) \;=\; f(x_2). \] Since \(f\) is also injective, it follows \(x_1 = x_2\). Thus \(g \circ f\) is injective. ### (b) Surjectivity Take any \(z \in Z\). Because \(g\) is onto, there exists \(y \in Y\) such that \(g(y) = z\). Moreover, since \(f\) is onto, there exists \(x \in X\) with \(f(x) = y\). Then \[ (g \circ f)(x) \;=\; g\bigl(f(x)\bigr) \;=\; g(y) \;=\; z. \] Hence every \(z \in Z\) is in the image of \((g \circ f)\). Thus \(g \circ f\) is surjective. Combining injectivity and surjectivity shows \(g \circ f\) is a **bijection** \(X \to Z\). --- ## 2. Show \(\,(g \circ f)^{-1} = f^{-1} \circ g^{-1}\) To prove two functions \((g \circ f)^{-1}\) and \(\bigl(f^{-1} \circ g^{-1}\bigr)\) are equal, we can check that each “undoes” the action of \(g \circ f\) from both sides. ### (a) \((g \circ f)\bigl(f^{-1} \circ g^{-1}(z)\bigr) = z\) Let \(z \in Z\). Define \[ x \;=\; \bigl(f^{-1} \circ g^{-1}\bigr)(z). \] Then \(g^{-1}(z) \in Y\) and \(f^{-1}\bigl(g^{-1}(z)\bigr) \in X\). We compute: \[ (g \circ f)(x) \;=\; g\bigl(f(x)\bigr) \;=\; g\Bigl(f\bigl(f^{-1}\bigl(g^{-1}(z)\bigr)\bigr)\Bigr) \;=\; g\bigl(g^{-1}(z)\bigr) \;=\; z. \] Hence for every \(z\), \((g \circ f)\bigl(\dots\bigl)=z\). This shows that \(f^{-1}\circ g^{-1}\) is a right‐inverse of \(g \circ f\). ### (b) \(\bigl(f^{-1} \circ g^{-1}\bigr)\bigl((g \circ f)(x)\bigr) = x\) Let \(x \in X\). Then \[ \bigl(f^{-1} \circ g^{-1}\bigr)\bigl((g \circ f)(x)\bigr) \;=\; f^{-1}\Bigl(g^{-1}\bigl(g\bigl(f(x)\bigr)\bigr)\Bigr) \;=\; f^{-1}\bigl(f(x)\bigr) \;=\; x. \] So \(f^{-1}\circ g^{-1}\) is also a left‐inverse of \(g \circ f\). Together, (a) and (b) show that \(\bigl(f^{-1} \circ g^{-1}\bigr)\) is indeed the two‐sided inverse of \(g \circ f\). Thus: \[ \boxed{ (g \circ f)^{-1} \;=\; f^{-1} \;\circ\; g^{-1}. } \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.