Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 7 - Functions - Exercise Set 7.3 - Page 427: 24

Answer

1. \(\displaystyle (g \circ f)(x) = -x - 3.\) 2. \(\displaystyle (g \circ f)^{-1}(x) = -x - 3.\) 3. \(\displaystyle g^{-1}(x) = -x.\) 4. \(\displaystyle f^{-1}(x) = x - 3.\) 5. \(\displaystyle (f^{-1}\circ g^{-1})(x) = -x - 3.\) 6. \(\displaystyle (g\circ f)^{-1} = f^{-1}\circ g^{-1}.\)

Work Step by Step

Below is a step‐by‐step solution. We have two functions: \[ f(x) = x + 3 \quad\text{and}\quad g(x) = -x. \] We wish to find: 1. \(g\circ f\) 2. \((g\circ f)^{-1}\) 3. \(g^{-1}\) 4. \(f^{-1}\) 5. \(f^{-1}\circ g^{-1}\) 6. Compare \((g\circ f)^{-1}\) and \(f^{-1}\circ g^{-1}\). --- ## 1) Compute \(g \circ f\) \[ (g\circ f)(x) \;=\; g\bigl(f(x)\bigr) \;=\; g(x+3) \;=\; -(\,x+3\,) \;=\; -x - 3. \] Hence \[ g \circ f : x \;\mapsto\; -x - 3. \] --- ## 2) Find \((g \circ f)^{-1}\) We have \((g\circ f)(x) = -x - 3\). To find the inverse, let \[ y = -x - 3. \] Solve for \(x\): \[ y + 3 = -x \quad\Longrightarrow\quad x = -\,y - 3. \] Therefore \[ (g\circ f)^{-1}(y) \;=\; -\,y \;-\; 3. \] Renaming the dummy variable \(y\) back to \(x\), we get \[ (g\circ f)^{-1}(x) \;=\; -\,x \;-\; 3. \] --- ## 3) Find \(g^{-1}\) Given \(g(x) = -x\), we check if \(g\) is its own inverse. Indeed, if \(y = -x\), then \(x = -y\). Thus \[ g^{-1}(x) = -x. \] Hence \(g\) is an involution: \(g = g^{-1}\). --- ## 4) Find \(f^{-1}\) Given \(f(x) = x+3\). If \(y = x+3\), then \(x = y-3\). Thus \[ f^{-1}(x) = x - 3. \] --- ## 5) Compute \(f^{-1}\circ g^{-1}\) We apply \(g^{-1}\) first, then \(f^{-1}\). Since \(g^{-1}(x) = -x\), \[ (f^{-1}\circ g^{-1})(x) \;=\; f^{-1}\bigl(g^{-1}(x)\bigr) \;=\; f^{-1}(-x) \;=\; (-x)\;-\;3 \;=\; -\,x \;-\; 3. \] --- ## 6) Relationship Between \((g \circ f)^{-1}\) and \(f^{-1}\circ g^{-1}\) From Steps 2 and 5, both \((g \circ f)^{-1}\) and \(f^{-1}\circ g^{-1}\) map \(x\) to \(-x-3\). Therefore, \[ \boxed{(g\circ f)^{-1} = f^{-1}\circ g^{-1}.} \] This matches the general fact that the inverse of a composition is the composition of the inverses in **reverse** order.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.