Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.4 The Method of Variation of Parameters - Problems - Page 242: 6

Answer

$y=C_{1}cos(t)+C_{2}sin(t)+C_{3}tcos(t)+C_{4}tsin(t)-\frac{1}{8}t^2sin(t)$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ ${y}^{(4)}+2{y}''+y=0 \;\;\;\;\Rightarrow \;\;\;\; r^4e^{rt}+2r^2e^{rt}+e^{rt}=0\\\\$ $r^4+2r^2+1=(r^2+1)(r^2+1)=0 $ $ \rightarrow\;\;\;\;\; r_{1,2}=\pm i\;\;\;\;\;\;\;or\;\;\;\;,r_{3,4}=\pm i\;\;\;\;\;\;\;\;\;\;\\\\$ $\boxed{y_{c}(t)= C_{1}cos(t)+C_{2}sin(t)+C_{3}tcos(t)+C_{4}tsin(t)}$ $y_{1}=cos(t)\;\;\;\;\;,\;\;y_{2}=sin(t)\;\;\;\;\;\;\;,\;\;\;y_{3}=tcos(t)\;\;\;\;\;\;\;,\;\;\;\;y_{4}=tsin(t)$ $W(cos(t),sin(t),tcos(t),tsin(t))=\begin{vmatrix} cos(t) & sin(t) & tcos(t) & tsin(t) \\ -sin(t) & cos(t) & -tsin(t)+cos(t) & tcos(t)+sin(t) \\ -cos(t) & -sin(t) & -tcos(t)-2sin(t) & -tsin(t)+2cos(t) \\ sin(t) & -cos(t) & tsin(t)-3cos(t) & -tcos(t)-3sin(t) \\ \end{vmatrix}\;=\;4$ $W_{1}=\begin{vmatrix} 0 & sin(t) & tcos(t) & tsin(t) \\ 0 & cos(t) & -tsin(t)+cos(t) & tcos(t)+sin(t) \\ 0 & -sin(t) & -tcos(t)-2sin(t) & -tsin(t)+2cos(t) \\ sin(t) & -cos(t) & tsin(t)-3cos(t) & -tcos(t)-3sin(t) \\ \end{vmatrix}\;=\;2sin(t)\{tcos(t)-sin(t)\}$ $W_{2}=\begin{vmatrix} cos(t) & 0 & tcos(t) & tsin(t) \\ -sin(t) & 0 & -tsin(t)+cos(t) & tcos(t)+sin(t) \\ -cos(t) & 0 & -tcos(t)-2sin(t) & -tsin(t)+2cos(t) \\ sin(t) & sin(t) & tsin(t)-3cos(t) & -tcos(t)-3sin(t) \\ \end{vmatrix}\;=\;2sin(t)\{tsin(t)+cos(t)\}$ $W_{3}=\begin{vmatrix} cos(t) & sin(t) & 0 & tsin(t) \\ -sin(t) & cos(t) & 0 & tcos(t)+sin(t) \\ -cos(t) & -sin(t) & 0 & -tsin(t)+2cos(t) \\ sin(t) & -cos(t) & sin(t) & -tcos(t)-3sin(t) \\ \end{vmatrix}\;=\;-2sin(t)cos(t)$ $W_{4}=\begin{vmatrix} cos(t) & sin(t) & tcos(t) & 0 \\ -sin(t) & cos(t) & -tsin(t)+cos(t) & 0 \\ -cos(t) & -sin(t) & -tcos(t)-2sin(t) & 0 \\ sin(t) & -cos(t) & tsin(t)-3cos(t) & sin(t) \\ \end{vmatrix}\;=\;-2sin^2(t)$ ${u}'_{1}=\frac{w_{1}}{w}=\frac{1}{2}sin(t)\{tcos(t)-sin(t)\}$ $u_{1}=\int \frac{1}{2}sin(t)\{tcos(t)-sin(t)\}= \frac{1}{16}\{-4t+3sin(2t)-2tcos(2t)\}$ ${u}'_{2}=\frac{w_{2}}{w}=\frac{1}{2}sin(t)\{tsin(t)+cos(t)\}$ $u_{2}=\int \frac{1}{2}sin(t)\{tsin(t)+cos(t)\}= \frac{1}{16}(2t^2-3cos(2t)-2tsin(2t))$ ${u}'_{3}=\frac{w_{3}}{w}=-\frac{1}{2}sin(t)cos(t)$ $u_{3}=\int -\frac{1}{2}sin(t)cos(t)= \frac{1}{4}cos^{2}(t) $ ${u}'_{4}=\frac{w_{4}}{w}=-\frac{1}{2}sin^2(t)$ $u_{4}=\int -\frac{1}{2}sin^2(t)= \frac{1}{8}(sin(2t)-2t) $ $y_{p}=y_{1}u_{1}+y_{2}u_{2}+y_{3}u_{3}+y_{4}u_{4}$ $y_{p}=-\frac{1}{8}t^2sin(t)-\frac{3}{8}tcos(t)+\frac{3}{16}sin(t)$ $y=y_{c}+y_{p}\\\\$ The terms $-\frac{3}{8}tcos(t)\;\;,\;\;\frac{3}{16}sin(t)$ will be absorbed in $C_{1}cos(t)\;\;,\;\;C_{2}sin(t)$ $y=C_{1}cos(t)+C_{2}sin(t)+C_{3}tcos(t)+C_{4}tsin(t)-\frac{1}{8}t^2sin(t)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.