Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.4 The Method of Variation of Parameters - Problems - Page 242: 17

Answer

$y_{p}=\frac{1}{2} \int_{x_{0}}^{x} [\frac{x}{t^2}-\frac{2x^2}{t^3}+\frac{x^3}{t^4}]g(t)dt$

Work Step by Step

${y}'''-\frac{3}{x}{y}''+\frac{6}{x^2}{y}'-\frac{6}{x^3}y=\frac{g(x)}{x^3}$ $W(x,x^2,x^3)=\begin{vmatrix} x & x^2 & x^3 \\ 1 & 2x & 3x^2 \\ 0 & 2 & 6x \\ \end{vmatrix}\;=\;2x^3$ $W_{1}=\begin{vmatrix} 0 & x^2 & x^3 \\ 0 & 2x & 3x^2 \\ \frac{g(x)}{x^3} & 2 & 6x \\ \end{vmatrix}\;=\;xg(x)$ $W_{2}=\begin{vmatrix} x & 0 & x^3 \\ 1 & 0 & 3x^2 \\ 0 & \frac{g(x)}{x^3} & 6x \\ \end{vmatrix}\;=\;-2g(x)$ $W_{3}=\begin{vmatrix} x & x^2 & 0 \\ 1 & 2x & 0 \\ 0 & 2 & \frac{g(x)}{x^3} \\ \end{vmatrix}\;=\;\frac{1}{x}g(x)$ ${u}'_{1}=\frac{w_{1}}{w}=\frac{g(x)}{2x^2}$ $u_{1}=\frac{1}{2} \int_{x_{0}}^{x} \frac{g(t)}{x^2}\;dt $ ${u}'_{2}=\frac{w_{2}}{w}=-\frac{g(x)}{x^3}$ $u_{2}= - \int_{x_{0}}^{x} \frac{g(t)}{x^3}\;dt$ ${u}'_{3}=\frac{w_{3}}{w}=\frac{g(x)}{2x^4}$ $u_{3}= \frac{1}{2} \int_{x_{0}}^{x} \frac{g(t)}{x^4} $ $y_{p}=y_{1}u_{1}+y_{2}u_{2}+y_{3}u_{3}$ $y_{p}=\frac{1}{2} \int_{x_{0}}^{x} \frac{g(t)}{x^2}\;dt x - \int_{x_{0}}^{x} \frac{g(t)}{x^3}\;dt x^2+ \frac{1}{2} \int_{x_{0}}^{x} \frac{g(t)}{x^4} x^3$ $y_{p}=\frac{1}{2} \int_{x_{0}}^{x} [\frac{x}{t^2}-\frac{2x^2}{t^3}+\frac{x^3}{t^4}]g(t)dt$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.