Answer
$$\int^{2}_{1}\frac{2^{\ln x}}{x}dx=\frac{2^{\ln2}-1}{\ln2}$$
Work Step by Step
$$A=\int^{2}_{1}\frac{2^{\ln x}}{x}dx$$
We set $u=\ln x$, which means $$du=\frac{1}{x}dx$$
- For $x=2$, we have $u=\ln2$
- For $x=1$, we have $u=\ln1=0$
Therefore, $$A=\int^{\ln2}_02^udu=\frac{2^u}{\ln2}\Big]^{\ln2}_0$$ $$A=\frac{2^{\ln2}-1}{\ln2}$$