University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 7 - Section 7.1 - The Logarithm Defined as an Integral - Exercises - Page 401: 24

Answer

$\sin \pi -\sin 1$ or, $-\sin 1$

Work Step by Step

Solve $\int_{0}^{\sqrt{\ln \pi}} 2xe^{x^2} \cos (e^{x^2}) dx$ Let us $p=e^{x^2}$ and $dp=2pe^{x^2}dx$ This implies $\int_{0}^{\sqrt{\ln \pi}} 2xe^{x^2} \cos (e^{x^2}) dx=\int_{0}^{\sqrt{\ln \pi}} \cos p dp$ $=[sin p]_{0}^{\sqrt{\ln \pi}} +c$ $=[sin e^{x^2}]_{0}^{\sqrt{\ln \pi}} +c$ Also, $=[\sin e^{(\sqrt{\ln \pi})^2}- \sin e^0] +c$ or, $=\sin \pi -\sin 1$ or, $=-\sin 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.