University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 3 - Section 3.8 - Derivatives of Inverse Functions and Logarithms - Exercises - Page 175: 41

Answer

$$y'=\frac{(2x+1)\sqrt{x(x+1)}}{2x(x+1)}$$

Work Step by Step

$$y=\sqrt{x(x+1)}$$ Logarithmic differentiation helps to simplify the differentiation of complex functions by using the algebraic properties of logarithm. In detail, 1) Take the natural logarithm of both sides and simplify: $$\ln y=\ln\sqrt{x(x+1)}=\ln\Big(\sqrt x\times\sqrt{x+1}\Big)$$ Recall that $\ln(A\times B)=\ln A+\ln B$: $$\ln y=\ln\sqrt x+\ln\sqrt{x+1}$$ 2) Then we take the derivative of both sides with respect to $x$ and remember that $(\ln x)'=1/x$: $$\frac{1}{y}\times y'=\frac{1}{\sqrt x}(\sqrt x)'+\frac{1}{\sqrt{x+1}}(\sqrt{x+1})'$$ $$\frac{y'}{y}=\frac{1}{\sqrt x}\times\frac{1}{2\sqrt x}+\frac{1}{\sqrt{x+1}}\times\frac{1}{2\sqrt{x+1}}(x+1)'$$ $$\frac{y'}{y}=\frac{1}{2x}+\frac{1}{2(x+1)}=\frac{x+1+x}{2x(x+1)}=\frac{2x+1}{2x(x+1)}$$ 3) Solve for $y'$: $$y'=\frac{2x+1}{2x(x+1)}\times y$$ 4) Finally, substitute for $y=\sqrt{x(x+1)}$ $$y'=\frac{(2x+1)\sqrt{x(x+1)}}{2x(x+1)}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.