Answer
$$y'=-\frac{5(3x+2)}{2(x+1)(x+2)}$$
Work Step by Step
$$y=\ln\sqrt{\frac{(x+1)^5}{(x+2)^{20}}}$$
The derivative of $y$: $$y'=\frac{1}{\sqrt{\frac{(x+1)^5}{(x+2)^{20}}}}\Big(\sqrt{\frac{(x+1)^5}{(x+2)^{20}}}\Big)'=\frac{1}{\sqrt{\frac{(x+1)^5}{(x+2)^{20}}}}\Big(\sqrt{\frac{(x+1)^5}{(x+2)^{20}}}\Big)'$$
We have $(\sqrt u)'=(u^{1/2})'=\frac{1}{2}u^{-1/2}=\frac{1}{2\sqrt u}$
Therefore, $$y'=\frac{1}{\sqrt{\frac{(x+1)^5}{(x+2)^{20}}}}\times\frac{1}{2\sqrt{\frac{(x+1)^5}{(x+2)^{20}}}}\times\Big(\frac{(x+1)^5}{(x+2)^{20}}\Big)'$$
$$y'=\frac{1}{2\frac{(x+1)^5}{(x+2)^{20}}}\times\Big(\frac{(x+1)^5}{(x+2)^{20}}\Big)'=\frac{(x+2)^{20}}{2(x+1)^5}\times\Big(\frac{(x+1)^5}{(x+2)^{20}}\Big)'$$
We now examine $\Big(\frac{(x+1)^5}{(x+2)^{20}}\Big)'$, using the Quotient Rules: $$\Big(\frac{(x+1)^5}{(x+2)^{20}}\Big)'=\Big[\Big(\frac{x+1}{(x+2)^4}\Big)^5\Big]'=5\Big(\frac{x+1}{(x+2)^4}\Big)^4\Big(\frac{x+1}{(x+2)^4}\Big)'$$ $$=\frac{5(x+1)^4}{(x+2)^{16}}\times\frac{(x+2)^4-4(x+2)^3(x+1)}{(x+2)^8}$$ $$=\frac{5(x+1)^4}{(x+2)^{16}}\times\frac{(x+2)^3(x+2-4(x+1))}{(x+2)^8}$$ $$=\frac{5(x+1)^4}{(x+2)^{16}}\times\frac{x+2-4x-4}{(x+2)^5}$$ $$=\frac{5(x+1)^4}{(x+2)^{16}}\times\frac{-3x-2}{(x+2)^5}=-\frac{5(x+1)^4(3x+2)}{(x+2)^{21}}$$
Apply the result back to the calculation of $y'$: $$y'=\frac{(x+2)^{20}}{2(x+1)^5}\times\Big(-\frac{5(x+1)^4(3x+2)}{(x+2)^{21}}\Big)$$
$$y'=-\frac{5(3x+2)}{2(x+1)(x+2)}$$