University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.6 - Limits Involving Infinity; Asymptotes of Graphs - Exercises - Page 108: 55

Answer

$$\lim_{x\to0^+}\Big(\frac{x^2}{2}-\frac{1}{x}\Big)=-\infty$$ $$\lim_{x\to0^-}\Big(\frac{x^2}{2}-\frac{1}{x}\Big)=\infty$$ $$\lim_{x\to\sqrt[3]2}\Big(\frac{x^2}{2}-\frac{1}{x}\Big)=0$$ $$\lim_{x\to-1}\Big(\frac{x^2}{2}-\frac{1}{x}\Big)=\frac{3}{2}$$

Work Step by Step

$$f(x)=\Big(\frac{x^2}{2}-\frac{1}{x}\Big)=\frac{x^3-2}{2x}$$ (a) As $x\to0^+$, $(2x)\to0^+\gt0$, while $(x^3-2)\to-2^+\lt0$. $\frac{x^3-2}{2x}\lt0$ as a result. That means $\frac{x^3-2}{2x}$ will approach $-\infty$. In other words, $$\lim_{x\to0^+}\Big(\frac{x^2}{2}-\frac{1}{x}\Big)=-\infty$$ (b) As $x\to0^-$, $(2x)\to0^-\lt0$, while $(x^3-2)\to-2^-\lt0$. $\frac{x^3-2}{2x}\gt0$ as a result. That means $\frac{x^3-2}{2x}$ will approach $\infty$. In other words, $$\lim_{x\to0^-}\Big(\frac{x^2}{2}-\frac{1}{x}\Big)=\infty$$ (c) $$\lim_{x\to\sqrt[3]2}f(x)=\lim_{x\to\sqrt[3]2}\frac{x^3-2}{2x}$$ $$\lim_{x\to\sqrt[3]2}f(x)=\frac{(\sqrt[3]2)^3-2}{2\sqrt[3]2}=\frac{2-2}{2\sqrt[3]2}=\frac{0}{2\sqrt[3]2}=0$$ (d) $$\lim_{x\to-1}f(x)=\lim_{x\to-1}\frac{x^3-2}{2x}$$ $$\lim_{x\to-1}f(x)=\frac{(-1)^3-2}{2(-1)}=\frac{-1-2}{-2}=\frac{-3}{-2}=\frac{3}{2}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.