University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.6 - Limits Involving Infinity; Asymptotes of Graphs - Exercises - Page 108: 54

Answer

$$\lim_{x\to1^+}\frac{x}{x^2-1}=\infty$$ $$\lim_{x\to1^-}\frac{x}{x^2-1}=-\infty$$ $$\lim_{x\to-1^+}\frac{x}{x^2-1}=\infty$$ $$\lim_{x\to-1^-}\frac{x}{x^2-1}=-\infty$$

Work Step by Step

$$f(x)=\frac{x}{x^2-1}=\frac{x}{(x-1)(x+1)}$$ (a) As $x\to1^+\gt0$, $(x-1)\to0^+\gt0$, while $(x+1)\to2^+\gt0$. $\frac{x}{(x-1)(x+1)}\gt0$ as a result. That means $\frac{x}{(x-1)(x+1)}$ will approach $\infty$. In other words, $$\lim_{x\to1^+}\frac{x}{x^2-1}=\infty$$ (b) As $x\to1^-\gt0$, $(x-1)\to0^-\lt0$, while $(x+1)\to2^-\gt0$. $\frac{x}{(x-1)(x+1)}\lt0$ as a result. That means $\frac{x}{(x-1)(x+1)}$ will approach $-\infty$. In other words, $$\lim_{x\to1^-}\frac{x}{x^2-1}=-\infty$$ (c) As $ x\to-1^+\lt0$, $(x+1)\to0^+\gt0$, while $(x-1)\to-2^+\lt0$. $\frac{x}{(x-1)(x+1)}\gt0$ as a result. That means $\frac{x}{(x-1)(x+1)}$ will approach $\infty$. In other words, $$\lim_{x\to-1^+}\frac{x}{x^2-1}=\infty$$ (d) As $x\to-1^-\lt0$, $(x+1)\to0^-\lt0$, while $(x-1)\to-2^-\lt0$. $\frac{x}{(x-1)(x+1)}\lt0$ as a result. That means $\frac{x}{(x-1)(x+1)}$ will approach $-\infty$. In other words, $$\lim_{x\to-1^-}\frac{x}{x^2-1}=-\infty$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.