University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 14 - Practice Exercises - Page 817: 25

Answer

$\dfrac{8}{35} $

Work Step by Step

Consider $I=\int_{0}^{1} \int_{0}^{x^2} \int_{0}^{x+1} (2x-y-z) \ dz \ dy \ dx$ or, $=\int_{0}^{1} \int_{0}^{x^2} [\dfrac{3x^2}{2}-\dfrac{3y^2}{2}] \ dy \ dx$ or, $=\int_{0}^{1} [\dfrac{3x^4}{2}-\dfrac{x^6}{2}] \ dx$ or, $=\int_{0}^{1} \dfrac{3x^4}{2} \ dx -\int_{0}^{1} \dfrac{x^6}{2} \ dx$ or, $=(3/2) \int_{0}^{1} x^4 \ dx-(1/2) \times [\dfrac{x^5}{5}]_0^1$ or, $=\dfrac{3}{2} [\dfrac{x^5}{5}]_0^1 -\dfrac{1}{2} [\dfrac{x^5}{5}]_0^1$ or, $=\dfrac{3}{2} \times \dfrac{1}{5}-\dfrac{1}{2} \times \dfrac{1}{7} $ or, $=\dfrac{3}{10}-\dfrac{1}{14} $ or, $=\dfrac{8}{35} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.