University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 14 - Practice Exercises - Page 817: 24

Answer

$1$

Work Step by Step

Consider $Area; A=\int_{\ln 6}^{\ln 7} \int_{0}^{\ln 2} \int_{\ln 4}^{\\ln 5} e^{(x+y+z)} \ dx \ dy \ dz$ or, $=\int_{\ln 6}^{\ln 7} \int_{0}^{\ln 2} [e^{(\ln 5+y+z)}-e^{\ln 4 +y+z} ] \ dy \ dz$ or, $=\int_{\ln 6}^{\ln 7} \int_{0}^{\ln 2} e^{y+z} \ dy \ dz$ or, $=\int_{\ln 6}^{\ln 7} [ e^{y+z}]_{0}^{\ln 2}\ dz$ or, $=\int_{\ln 6}^{\ln 7} [ 2e^{z}-e^z] \ dz$ or, $=\int_{\ln 6}^{\ln 7} e^{z} \ dz$ or, $=[e^z] \ dz$ or, $=e^{\ln 7}-e^{\ln 6}$ or, $=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.