University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 14 - Practice Exercises - Page 817: 19

Answer

$ \pi $

Work Step by Step

Consider $Average= \int_{-1}^{1} \int_{-\sqrt {1-x^2}}^{\sqrt {1-x^2}} \dfrac{2}{(1+x^2+y^2)} \ dy \ dx$ We need to convert rectangular coordinates into polar coordinates. Therefore, $Average= \int_{0}^{2 \pi} \int_{0}^{1} \dfrac{2r}{(1+r^2)} \ dr \ d \theta$ or, $= \int_{0}^{2 \pi} [- \dfrac{1}{(1+r^2)}]_{0}^{1} \ d \theta$ or, $=\dfrac{1}{2} \int_{0}^{2 \pi} \ d\theta$ or, $=\dfrac{1}{2} [2\pi -0]$ or, $= \pi $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.