University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 14 - Practice Exercises - Page 817: 13

Answer

$\dfrac{4}{3}$

Work Step by Step

Consider $Area; A=\int_{-2}^{0} \int_{ 2x+4}^{4-x^2} dy \ dx$ or, $=\int_{-2}^{0} (-x^2 -2x) \ dx $ or, $=- \int_{-2}^{0} x^2 \ dx - 2 \int_{-2}^{0} x \ dx $ or, $=-[ \dfrac{x^3}{3}]_{-2}^0 - [ x^2]_{-2}^0 $ or, $=-[ 0-\dfrac{(-2)^3}{3}] - [0- (-2)^2] $ or, $=\dfrac{4}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.