University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 14 - Practice Exercises - Page 817: 23

Answer

$0$

Work Step by Step

Consider $Area; A=\int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\pi} \cos (x+y+z) \ dx \ dy \ dz$ or, $=\int_{0}^{\pi} [\sin (\pi+y+z) -\sin (y+z) \ dy \ dz $ or, $=\int_{0}^{\pi} [-\cos (\pi+y+z) +\cos (y+z)]_0^{\pi} \ dz $ or, $=\int_{0}^{\pi} [-\cos (2 \pi+z) + 2 \cos (\pi+z)+\cos z] \ dz $ or, $=\int_{0}^{\pi} [-\cos (z) + 2 \cos (z)+\cos z] \ dz $ or, $=\int_{0}^{\pi} [- 2 \cos (z) ] \ dz $ or, $=-2[\sin z]_0^{\pi}$ or, $=-2[ \sin \pi -\sin 0]$ or, $=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.