University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 14 - Practice Exercises - Page 817: 11

Answer

$\dfrac{\ln (17)}{4}$

Work Step by Step

Consider $I=\int_{0}^{8} \int_{\sqrt[3] x}^{2} \dfrac{1}{y^4+1} \ dy \ dx$ or, $=\int_{0}^{2} \int_{0}^{y^3} \dfrac{1}{y^4+1} \ dx \ dy$ or, $=\dfrac{1}{4} \times \int_{0}^{2} \dfrac{4y^3}{y^4+1} \ dy$ Plu $y^4+1=u$ and $du=4y^3 dy$ Now, $I=(1/4) \int_{0}^2 u^{-1} du$ or, $=(1/4) [\ln u]_0^2$ or, $=\dfrac{\ln (17)}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.