Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Practice Exercises - Page 308: 43

Answer

$$ - \frac{1}{3}\cos \left( {2{t^{3/2}}} \right) + C $$

Work Step by Step

$$\eqalign{ & \int {\sqrt t } \sin \left( {2{t^{3/2}}} \right)dt \cr & = \int {{t^{1/2}}} \sin \left( {2{t^{3/2}}} \right)dt \cr & {\text{use the substitution method }} \cr & u = 2{t^{3/2}},\,\,\,\,du = 3{t^{1/2}}dt,\,\,\,\,\,dt = \frac{{du}}{{3{t^{1/2}}}} \cr & {\text{Then}}{\text{,}} \cr & \int {{t^{1/2}}} \sin \left( {2{t^{3/2}}} \right)dt = \int {{t^{1/2}}} \sin u\left( {\frac{{du}}{{3{t^{1/2}}}}} \right) \cr & = \frac{1}{3}\int {\sin u} du \cr & {\text{integrate}} \cr & = \frac{1}{3}\left( { - \cos u} \right) + C \cr & = - \frac{1}{3}\cos u + C \cr & {\text{write in terms of }}t;{\text{ replace }}u = 2{t^{3/2}} \cr & = - \frac{1}{3}\cos \left( {2{t^{3/2}}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.