Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.2 - Double Integrals over General Regions - 15.2 Exercise - Page 1008: 9

Answer

$$\frac{e^9-1}{2e^9}$$

Work Step by Step

Given $$\iint_{D} e^{-y^2} d A, \quad D=\{(x, y) | 0 \leqslant x \leqslant y,0 \leqslant y \leqslant 3\}$$ From $D$, we have \begin{align*} \iint_{D} e^{-y^2} d A&=\int_{0}^{3}\int_{0}^{y}e^{-y^2} dxdy\\ &=\int_{0}^{3}[x]_{0}^{y}e^{-y^2} dxdy\\ &= \int_{0}^{3}ye^{-y^2} dy \\ &=\frac{-1}{2}e^{-y^2}\bigg|_{0}^{3}\\ &=\frac{1}{2}(1-e^{-9})\\ &=\frac{e^9-1}{2e^9} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.