Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.2 - Double Integrals over General Regions - 15.2 Exercise - Page 1008: 26

Answer

$\frac{14}{3}$

Work Step by Step

The volume under the surface $z=f(x,y)$ and above the region D in the xy-plane can be defined as: $$Volume=\int\int_Df(x,y)dA$$ We can express the region D in the triangular region as follows: $$D=\{(x,y)|0\leq x\leq2,0\leq y\leq2-x\}$$ Therefore, $$Volume=\int\int_Df(x,y)dA \\=\int_0^2\int_0^{2-x}(x^2+y^2+1)dydx \\=\int_0^2\biggr[x^2y+\frac{1}{3}y^3+y\biggr]_{y=0}^{y=2-x}dx \\=\int_0^2(-\frac{4}{3}x^3+4x^2-5x+\frac{14}{3})dx \\=\biggr[-\frac{1}{3}x^4+\frac{4}{3}x^3-\frac{5}{2}x^2+\frac{14}{3}x\biggr]_0^2 \\=-\frac{16}{3}+\frac{32}{3}-10+\frac{28}{3} \\=\frac{14}{3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.