Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.2 - Double Integrals over General Regions - 15.2 Exercise - Page 1008: 27

Answer

$\frac{16}{3}$

Work Step by Step

The volume under the surface $z=f(x,y)$ and above the region D in the xy-plane can be defined as: $$Volume=\int\int_Df(x,y)dA$$ We can express the region D in the triangular region as follows: $$D=\{(x,y)|0\leq x\leq2,0\leq y\leq -2x+4\}$$ Therefore, $$Volume=\int\int_Df(x,y)dA \\=\int_0^2\int_0^{-2x+4}(-2x-y+4)dydx \\=\int_0^2\biggr[-2xy-\frac{1}{2}y^2+4y\biggr]_{y=0}^{y=-2x+4}dx \\=\int_0^2\biggr[-2x(-2x+4)-\frac{1}{2}(-2x+4)^2+4(-2x+4)\biggr]dx \\=\int_0^2(2x^2-8x+8)dx \\=\int_0^22(x-2)^2dx \\=\frac{2}{3}(x-2)^3\biggr|_0^2 \\=\frac{16}{3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.