Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.2 - Double Integrals over General Regions - 15.2 Exercise - Page 1008: 4

Answer

$$-\frac{\pi }{2}+1+\frac{\pi ^2}{8}$$

Work Step by Step

Given $$\int_{0}^{\pi / 2} \int_{0}^{x} x \sin y d y d x$$ Since \begin{align*} \int_{0}^{\pi / 2} \int_{0}^{x} x \sin y d y d x&=\int_{0}^{\pi / 2} x \left[-\cos y\right]_{0}^{x} d x\\ &=\int_{0}^{\pi / 2}(-x\cos x+x)dx \end{align*} integrating by parts \begin{align*} u&=x\ \ \ \ \ \ \ \ \ \ dv=-\cos x\\ du&=dx\ \ \ \ \ \ \ \ \ \ v=-\sin xdx \end{align*} then \begin{align*} \int -x\cos xdx&=-x\sin x+\int \sin xdx\\ &=-x\sin x-\cos x \end{align*} Hence \begin{align*} \int_{0}^{\pi / 2} \int_{0}^{x} x \sin y d y d x &=\int_{0}^{\pi / 2}(-x\cos x+x)dx\\ &=-x\sin x-\cos x+\frac{1}{2}x^2\bigg|_{0}^{\pi/2}\\ &=-\frac{\pi }{2}+1+\frac{\pi ^2}{8} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.