Answer
$$\frac{2\left(e+1\right)^{\frac{3}{2}}-4\sqrt{2}}{3}$$
Work Step by Step
Given
$$\int_{0}^{1}\int_{0}^{e^v}\sqrt{1+e^v}dwdv$$
Since
\begin{align*}
\int_{0}^{1}\int_{0}^{e^v}\sqrt{1+e^v}dwdv&=\int_{0}^{1}\sqrt{1+e^v} [w]_{0}^{e^v}dv\\
&=\int_{0}^{1} e^v\sqrt{1+e^v} dv\\
&=\frac{2}{3}(1+e^v)^{3/2}\bigg|_{0}^{1}\\
&=\frac{2\left(e+1\right)^{\frac{3}{2}}-4\sqrt{2}}{3}
\end{align*}