Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.2 - Double Integrals over General Regions - 15.2 Exercise - Page 1008: 13

Answer

$ \dfrac{1}{3}$

Work Step by Step

We can define the domain $D$ in the Type-1 as follows: $ D=\left\{ (x, y) | 0 \leq x\leq 1, \ 0 \leq y \leq x \right\} $ Therefore, $\iint_{D} x dA=\int_{0}^{1} \int_{0}^{x} x \ dy \ dx \\= \int_0^1 [xy]_{0}{x} dx \\ = \int_0^1 x^2 dx \\ [\dfrac{x^3}{3}]_0^1 \\= \dfrac{1}{3}$ Now, we can define the domain $D$ in the Type-2 as follows: $ D=\left\{ (x, y) | 0 \leq y \leq 1, \ y \leq x \leq 1 \right\} $ Therefore, $\iint_{D} x dA=\int_{0}^{1} \int_{y}^{1} x \ dx \ dy \\= \int_0^1 [x^2/2]_{y}{1} dx \\ = \int_0^1 \dfrac{1}{2}-\dfrac{y^2 dy}{2} \\ [\dfrac{y}{2}-\dfrac{y^3}{6}]_0^1 \\= \dfrac{1}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.