Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.2 - Double Integrals over General Regions - 15.2 Exercise - Page 1008: 10

Answer

$$\frac{4}{3}$$

Work Step by Step

Given $$\iint_{D}y\sqrt{x^2-y^2} d A, \quad D=\{(x, y) | 0 \leqslant x \leqslant 2,0 \leqslant y \leqslant x\}$$ From $D$, we have \begin{align*} \iint_{D} e^{-y^2} d A&=\int_{0}^{2}\int_{0}^{x}y\sqrt{x^2-y^2} dydx\\ &=\frac{-1}{3}\int_{0}^{2} (x^2-y^2)^{3/2}\bigg|_{0}^{x} dx\\ &=\frac{1}{3}\int_{0}^{2} x^{3} dx\\ &=\frac{1}{12}x^4\bigg|_{0}^{2}\\ &= \frac{4}{3} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.