Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.2 - Double Integrals over General Regions - 15.2 Exercise - Page 1008: 7

Answer

$$\frac{1}{4}\ln(17)$$

Work Step by Step

Given $$\iint_{D} \frac{y}{x^{2}+1} d A, \quad D=\{(x, y) | 0 \leqslant x \leqslant 4,0 \leqslant y \leqslant \sqrt{x}\}$$ From $D$, we have \begin{align*} \iint_{D} \frac{y}{x^{2}+1} d A&=\int_{0}^{4}\int_{0}^{\sqrt{x}}\frac{y}{x^{2}+1} dydx\\ &=\frac{1}{2}\int_{0}^{4} \frac{1}{x^{2}+1}[y^2]_{0}^{\sqrt{x}} dx\\ &=\frac{1}{2}\int_{0}^{4} \frac{x}{x^{2}+1} dx\\ &=\frac{1}{4}\ln (x^2+1)\bigg|_{0}^{4}\\ &=\frac{1}{4}\ln(17) \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.