Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.2 Exponential Functions and Their Derivatives - 6.2 Exercises: 39

Answer

$\frac{xe^x(x^3+2e^x)}{(x^2+e^x)^2}$

Work Step by Step

$\frac{d}{dx}\frac{x^2e^x}{x^2+e^x}$ $=\frac{(x^2+e^x)\frac{d}{dx}x^2e^x-x^2e^x\frac{d}{dx}(x^2+e^x)}{(x^2+e^x)^2}$ $=\frac{(x^2+e^x)(x^2\frac{d}{dx}e^x+e^x\frac{d}{dx}x^2)-x^2e^x(2x+e^x)}{(x^2+e^x)^2}$ $=\frac{(x^2+e^x)(x^2e^x+e^x*2x)-x^2e^x(2x+e^x)}{(x^2+e^x)^2}$ $=\frac{xe^x(x^2+e^x)(x+2)-xe^x*x(2x+e^x)}{(x^2+e^x)^2}$ $=\frac{xe^x[(x^3+2x^2+xe^x+2e^x)-(2x^2+xe^x)]}{(x^2+e^x)^2}$ $=\frac{xe^x[x^3+2x^2+xe^x+2e^x-2x^2-xe^x]}{(x^2+e^x)^2}$ $=\frac{xe^x(x^3+2e^x)}{(x^2+e^x)^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.