Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.2 Exponential Functions and Their Derivatives - 6.2 Exercises: 27

Answer

$0$

Work Step by Step

Need to find the limit for $\lim\limits_{x \to2^{+}}e^{\frac{3}{(2-x)}}$. Consider $y=\lim\limits_{x \to2^{+}}e^{\frac{3}{(2-x)}}$ when ${x \to 2^{+}}$ then $(2-x) \to 0^{-}$ Thus, $y=\lim\limits_{x \to2^{+}}e^{\frac{3}{(2-x)}}=-\infty$ We have found the fact that $\lim\limits_{x \to2^{+}}e^{\frac{3}{(2-x)}}=\lim\limits_{y \to-\infty}e^{\frac{3}{(2-x)}}=e^{-\infty}=\frac{1}{e^{\infty}}=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.