Answer
$t=\frac{\ln(2)}{0.06}\approx 11.55$
Work Step by Step
We have:
$$P(t)=2.4e^{0.06t}$$
$$P(0)=2.4e^{0.06cdot 0}=2.4$$
Find $t$ such that:
$$P(t)=2P(0)$$
$$2.4e^{0.06t}=2\cdot 2.4$$
$$e^{0.06t}=2$$
$$\ln(e^{0.06t})=\ln(2)$$
$$0.06t=\ln(2)$$
$$t=\frac{\ln(2)}{0.06}$$
$$t\approx 11.55$$