Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 588: 46

Answer

We show that the series $\pi - \dfrac{{{\pi ^3}}}{{3!}} + \dfrac{{{\pi ^5}}}{{5!}} - \dfrac{{{\pi ^7}}}{{7!}} + \cdot\cdot\cdot$ converges to zero. Five terms must be computed so that the approximation is within $0.01$ of zero.

Work Step by Step

From Table 2 we get $\sin x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{2n + 1}}}}{{\left( {2n + 1} \right)!}} = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - \dfrac{{{x^7}}}{{7!}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $x$ Thus, our original series can be represented by $\sin \pi = \pi - \dfrac{{{\pi ^3}}}{{3!}} + \dfrac{{{\pi ^5}}}{{5!}} - \dfrac{{{\pi ^7}}}{{7!}} + \cdot\cdot\cdot$ Since $\sin \pi = 0$, the series $\pi - \dfrac{{{\pi ^3}}}{{3!}} + \dfrac{{{\pi ^5}}}{{5!}} - \dfrac{{{\pi ^7}}}{{7!}} + \cdot\cdot\cdot$, converges to zero. Notice that the positive terms of this series are ${b_n} = \dfrac{{{\pi ^{2n + 1}}}}{{\left( {2n + 1} \right)!}}$. Let $S = \sin \pi = \pi - \dfrac{{{\pi ^3}}}{{3!}} + \dfrac{{{\pi ^5}}}{{5!}} - \dfrac{{{\pi ^7}}}{{7!}} + \cdot\cdot\cdot$. By Eq. (2) in Section 11.4: $\left| {S - {S_n}} \right| \lt {b_{n + 1}}$ We choose $n$ so that $\left| {S - {S_n}} \right| \lt {b_{n + 1}} \lt {10^{ - 2}}$ $\dfrac{{{\pi ^{2n + 3}}}}{{\left( {2n + 3} \right)!}} \lt {10^{ - 2}}$ $\dfrac{{\left( {2n + 3} \right)!}}{{{\pi ^{2n + 3}}}} \gt {10^2}$ We evaluate and list some values for $n$ in the following table: $\begin{array}{*{20}{c}} n&{}&{\dfrac{{\left( {2n + 3} \right)!}}{{{\pi ^{2n + 3}}}}}\\ 2&{}&{1.67}\\ 3&{}&{12.17}\\ 4&{}&{135.68}\\ 5&{}&{2144.53} \end{array}$ Based on the results in the table above, we choose $N=4$, or five terms required such that the approximation is within $0.01$ of zero. Using a calculator, we compute: ${S_4} \approx 0.0069253$. Hence, $\left| {0 - {S_4}} \right| \approx 0.0069253 \lt 0.01$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.