Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 588: 43

Answer

We show that ${\sin ^{ - 1}}x = x + \mathop \sum \limits_{n = 1}^\infty \dfrac{{1\cdot3\cdot\cdot\cdot\left( {2n - 1} \right)}}{{2\cdot4\cdot6\cdot\cdot\cdot\left( {2n} \right)}}\dfrac{{{x^{2n + 1}}}}{{2n + 1}}$, for $\left| x \right| \lt 1$.

Work Step by Step

Write $f\left( x \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }} = {\left( {1 + \left( { - {x^2}} \right)} \right)^{ - 1/2}}$. We have from Table 2: ${\left( {1 + x} \right)^a} = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} a\\ n \end{array}} \right){x^n} = 1 + ax + \dfrac{{a\left( {a - 1} \right)}}{{2!}}{x^2} + \dfrac{{a\left( {a - 1} \right)\left( {a - 2} \right)}}{{3!}}{x^3} + \cdot\cdot\cdot$ converges for $\left| x \right| \lt 1$. Let $a = - \dfrac{1}{2}$. Substituting $ - {x^2}$ for $x$ in the series above, we get ${\left( {1 + \left( { - {x^2}} \right)} \right)^{ - 1/2}} = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right){\left( { - {x^2}} \right)^n} = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right){\left( { - 1} \right)^n}{x^{2n}}$, ${\ \ \ }$ for $\left| { - {x^2}} \right| \lt 1$, or $\left| x \right| \lt 1$. From Theorem 1 in Section 7.8, we know that ${\sin ^{ - 1}}x = \smallint \dfrac{1}{{\sqrt {1 - {x^2}} }}{\rm{d}}x$ Therefore, ${\sin ^{ - 1}}x = \smallint \dfrac{1}{{\sqrt {1 - {x^2}} }}{\rm{d}}x = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right){\left( { - 1} \right)^n}\smallint {x^{2n}}{\rm{d}}x$ ${\sin ^{ - 1}}x = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right)\dfrac{{{{\left( { - 1} \right)}^n}}}{{2n + 1}}{x^{2n + 1}} + C$, ${\ \ \ }$ where $C$ is a constant of integration Setting $x=0$, we get ${\sin ^{ - 1}}0 = 0 = C$. Thus ${\sin ^{ - 1}}x = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} { - \dfrac{1}{2}}\\ n \end{array}} \right)\dfrac{{{{\left( { - 1} \right)}^n}}}{{2n + 1}}{x^{2n + 1}}$ Since $\left( {\begin{array}{*{20}{c}} a\\ n \end{array}} \right) = \dfrac{{a\left( {a - 1} \right)\left( {a - 2} \right)\cdot\cdot\cdot\left( {a - n + 1} \right)}}{{n!}}$, $\left( {\begin{array}{*{20}{c}} a\\ 0 \end{array}} \right) = 1$, so ${\sin ^{ - 1}}x = x + \mathop \sum \limits_{n = 1}^\infty \dfrac{{a\left( {a - 1} \right)\left( {a - 2} \right)\cdot\cdot\cdot}}{{n!}}{\left( { - 1} \right)^n}\dfrac{{{x^{2n + 1}}}}{{2n + 1}}$ $ = x + \dfrac{1}{{2\cdot1!}}\dfrac{{{x^3}}}{3} + \dfrac{{1\cdot3}}{{2\cdot2\cdot2!}}\dfrac{{{x^5}}}{5} + \dfrac{{1\cdot3\cdot5}}{{2\cdot2\cdot2\cdot3!}}\dfrac{{{x^7}}}{7} + \cdot\cdot\cdot$ $ = x + \dfrac{1}{2}\dfrac{{{x^3}}}{3} + \dfrac{{1\cdot3}}{{2\cdot2\cdot\left( {1\cdot2} \right)}}\dfrac{{{x^5}}}{5} + \dfrac{{1\cdot3\cdot5}}{{2\cdot2\cdot2\cdot\left( {1\cdot2\cdot3} \right)}}\dfrac{{{x^7}}}{7} + \cdot\cdot\cdot$ $ = x + \dfrac{1}{2}\dfrac{{{x^3}}}{3} + \dfrac{{1\cdot3}}{{2\cdot4}}\dfrac{{{x^5}}}{5} + \dfrac{{1\cdot3\cdot5}}{{2\cdot4\cdot6}}\dfrac{{{x^7}}}{7} + \cdot\cdot\cdot$ Hence, ${\sin ^{ - 1}}x = x + \mathop \sum \limits_{n = 1}^\infty \dfrac{{1\cdot3\cdot\cdot\cdot\left( {2n - 1} \right)}}{{2\cdot4\cdot6\cdot\cdot\cdot\left( {2n} \right)}}\dfrac{{{x^{2n + 1}}}}{{2n + 1}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.