Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 588: 39

Answer

${\cos ^2}x = \dfrac{1}{2} + \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{2^{2n - 1}}{x^{2n}}}}{{\left( {2n} \right)!}}$, converges for all $x$.

Work Step by Step

From Table 2, we get $\cos x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{x^{2n}}}}{{\left( {2n} \right)!}}$, converges for all $x$. Substituting $2x$ for $x$ in the series above gives $\cos 2x = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{{\left( {2x} \right)}^{2n}}}}{{\left( {2n} \right)!}} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{2^{2n}}{x^{2n}}}}{{\left( {2n} \right)!}}$ Since ${\cos ^2}x = \dfrac{1}{2}\left( {1 + \cos 2x} \right)$, so ${\cos ^2}x = \dfrac{1}{2}\left( {1 + \cos 2x} \right) = \dfrac{1}{2}\left( {1 + \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{2^{2n}}{x^{2n}}}}{{\left( {2n} \right)!}}} \right)$ ${\cos ^2}x = \dfrac{1}{2} + \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^n}{2^{2n - 1}}{x^{2n}}}}{{\left( {2n} \right)!}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.