Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 588: 41

Answer

We show that $\dfrac{1}{2}\ln \left( {\dfrac{{1 + x}}{{1 - x}}} \right) = x + \dfrac{{{x^3}}}{3} + \dfrac{{{x^5}}}{5} + \cdot\cdot\cdot$, for $\left| x \right| \lt 1$. And conclude that $\dfrac{1}{2}\ln \left( {\dfrac{{1 + x}}{{1 - x}}} \right) = {\tanh ^{ - 1}}x$, converges for $\left| x \right| \lt 1$.

Work Step by Step

From Table 2 we get $\ln \left( {1 + x} \right) = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{{\left( { - 1} \right)}^{n - 1}}{x^n}}}{n} = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for $\left| x \right| \lt 1$ and $x=1$. Substituting $-x$ for $x$ in the series above, we also get $\ln \left( {1 - x} \right) = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{{\left( { - 1} \right)}^{n - 1}}{{\left( { - x} \right)}^n}}}{n} = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{{\left( { - 1} \right)}^{2n - 1}}{x^n}}}{n} = - x - \dfrac{{{x^2}}}{2} - \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + \cdot\cdot\cdot$ Thus, $\dfrac{1}{2}\ln \left( {\dfrac{{1 + x}}{{1 - x}}} \right) = \dfrac{1}{2}\left[ {\ln \left( {1 + x} \right) - \ln \left( {1 - x} \right)} \right] = \dfrac{1}{2}\left[ {2\left( {x + \dfrac{{{x^3}}}{3} + \dfrac{{{x^5}}}{5} + \cdot\cdot\cdot} \right)} \right]$ Hence, $\dfrac{1}{2}\ln \left( {\dfrac{{1 + x}}{{1 - x}}} \right) = x + \dfrac{{{x^3}}}{3} + \dfrac{{{x^5}}}{5} + \cdot\cdot\cdot$, for $\left| x \right| \lt 1$. From Exercise 40, we know that ${\tanh ^{ - 1}}x = x + \dfrac{{{x^3}}}{3} + \dfrac{{{x^5}}}{5} + \cdot\cdot\cdot$. Thus, we conclude that $\dfrac{1}{2}\ln \left( {\dfrac{{1 + x}}{{1 - x}}} \right) = {\tanh ^{ - 1}}x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.