Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 588: 37

Answer

The Taylor series centered at $c=3$ is $T\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^{n + 1}}\left( {{2^{n + 1}} - 1} \right)}}{{{2^{2n + 3}}}}{\left( {x - 3} \right)^n}$. It is valid for $\left| {x - 3} \right| \lt 2$.

Work Step by Step

We compute the derivatives and list them in the following table: $\begin{array}{*{20}{c}} n&{{f^{\left( n \right)}}\left( x \right)}\\ 0&{\dfrac{1}{{1 - {x^2}}}}\\ 1&{\dfrac{{2x}}{{{{\left( { - 1 + {x^2}} \right)}^2}}}}\\ 2&{ - \dfrac{{2\left( {1 + 3{x^2}} \right)}}{{{{\left( { - 1 + {x^2}} \right)}^3}}}}\\ 3&{\dfrac{{24\left( {x + {x^3}} \right)}}{{{{\left( { - 1 + {x^2}} \right)}^4}}}}\\ 4&{ - \dfrac{{24\left( {1 + 10{x^2} + 5{x^4}} \right)}}{{{{\left( { - 1 + {x^2}} \right)}^5}}}} \end{array}\begin{array}{*{20}{c}} {\dfrac{{{f^{\left( n \right)}}\left( x \right)}}{{n!}}}&{\dfrac{{{f^{\left( n \right)}}\left( 3 \right)}}{{n!}}}\\ {\dfrac{1}{{1 - {x^2}}}}&{ - \dfrac{1}{8}}\\ {\dfrac{{2x}}{{{{\left( { - 1 + {x^2}} \right)}^2}}}}&{\dfrac{3}{{32}}}\\ {\dfrac{{ - 1 - 3{x^2}}}{{{{\left( { - 1 + {x^2}} \right)}^3}}}}&{ - \dfrac{7}{{128}}}\\ {\dfrac{{4\left( {x + {x^3}} \right)}}{{{{\left( { - 1 + {x^2}} \right)}^4}}}}&{\dfrac{{15}}{{512}}}\\ {\dfrac{{ - 1 - 10{x^2} - 5{x^4}}}{{{{\left( { - 1 + {x^2}} \right)}^5}}}}&{ - \dfrac{{31}}{{2048}}} \end{array}$ By Theorem 1, the Taylor series is given by $T\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{f^{\left( n \right)}}\left( 3 \right)}}{{n!}}{\left( {x - 3} \right)^n}$ Using the table we have obtained, we get $T\left( x \right) = - \dfrac{1}{8} + \dfrac{3}{{32}}\left( {x - 3} \right) - \dfrac{7}{{128}}{\left( {x - 3} \right)^2} + \dfrac{{15}}{{512}}{\left( {x - 3} \right)^3} - \dfrac{{31}}{{2048}}{\left( {x - 3} \right)^4} + \cdot\cdot\cdot$ So, $T\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^{n + 1}}\left( {{2^{n + 1}} - 1} \right)}}{{{2^{2n + 3}}}}{\left( {x - 3} \right)^n}$. Let ${a_n} = \dfrac{{{{\left( { - 1} \right)}^{n + 1}}\left( {{2^{n + 1}} - 1} \right)}}{{{2^{2n + 3}}}}{\left( {x - 3} \right)^n}$. We compute $\rho $ from the Ratio Test: $\rho = \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{a_{n + 1}}}}{{{a_n}}}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{\left( {{2^{n + 2}} - 1} \right)}}{{{2^{2n + 5}}}}\dfrac{{{{\left( {x - 3} \right)}^{n + 1}}}}{{{{\left( {x - 3} \right)}^n}}}\dfrac{{{2^{2n + 3}}}}{{{2^{n + 1}} - 1}}} \right|$ $ = \dfrac{1}{4}\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{2^{n + 2}} - 1}}{{{2^{n + 1}} - 1}}\left( {x - 3} \right)} \right| = \dfrac{1}{4}\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{2 - \dfrac{1}{{{2^{n + 1}}}}}}{{1 - \dfrac{1}{{{2^{n + 1}}}}}}\left( {x - 3} \right)} \right|$ $ = \dfrac{1}{2}\left| {x - 3} \right|$ We find that $\rho \lt 1$ if $\dfrac{1}{2}\left| {x - 3} \right| \lt 1$, or $\left| {x - 3} \right| \lt 2$. Thus, the Taylor series centered at $c=3$ is $T\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^{n + 1}}\left( {{2^{n + 1}} - 1} \right)}}{{{2^{2n + 3}}}}{\left( {x - 3} \right)^n}$. It is valid for $\left| {x - 3} \right| \lt 2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.