Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 588: 40

Answer

We show that ${\tanh ^{ - 1}}x = x + \dfrac{{{x^3}}}{3} + \dfrac{{{x^5}}}{5} + \cdot\cdot\cdot$, for $\left| x \right| \lt 1$.

Work Step by Step

Recall that $\dfrac{d}{{dx}}{\tanh ^{ - 1}}x = \dfrac{1}{{1 - {x^2}}}$. So, ${\tanh ^{ - 1}}x = \smallint \dfrac{1}{{1 - {x^2}}}{\rm{d}}x + C$, ${\ \ \ }$ where $C$ is a constant of integration. From Table 2, we know that $\dfrac{1}{{1 - x}} = \mathop \sum \limits_{n = 0}^\infty {x^n} = 1 + x + {x^2} + {x^3} + {x^4} + \cdot\cdot\cdot$, ${\ \ \ }$ converges to $\dfrac{1}{{1 - x}}$ for $\left| x \right| \lt 1$. Substituting ${x^2}$ for $x$ in the series above gives $\dfrac{1}{{1 - {x^2}}} = \mathop \sum \limits_{n = 0}^\infty {x^{2n}} = 1 + {x^2} + {x^4} + {x^6} + {x^8} + \cdot\cdot\cdot$, ${\ \ \ }$ converges to $\dfrac{1}{{1 - {x^2}}}$ for $\left| {{x^2}} \right| \lt 1$, or $\left| x \right| \lt 1$. Therefore, ${\tanh ^{ - 1}}x = \mathop \sum \limits_{n = 0}^\infty \smallint {x^{2n}}{\rm{d}}x + C$ ${\tanh ^{ - 1}}x = \mathop \sum \limits_{n = 0}^\infty \dfrac{1}{{2n + 1}}{x^{2n + 1}} + C$ Setting $x=0$, we get ${\tanh ^{ - 1}}0 = 0 = C$. Thus ${\tanh ^{ - 1}}x = \mathop \sum \limits_{n = 0}^\infty \dfrac{1}{{2n + 1}}{x^{2n + 1}}$ Hence, ${\tanh ^{ - 1}}x = \mathop \sum \limits_{n = 0}^\infty \dfrac{1}{{2n + 1}}{x^{2n + 1}} = x + \dfrac{{{x^3}}}{3} + \dfrac{{{x^5}}}{5} + \cdot\cdot\cdot$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.