Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 588: 36

Answer

The Taylor series centered at $c=4$ is $T\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} {\dfrac{1}{2}}\\ n \end{array}} \right)\dfrac{2}{{{4^n}}}{\left( {x - 4} \right)^n}$ It is valid for $\left| {x - 4} \right| \lt 4$.

Work Step by Step

Write $f\left( x \right) = \sqrt x = \sqrt {4 + \left( {x - 4} \right)} = 2\sqrt {1 + \left( {\dfrac{{x - 4}}{4}} \right)} $. We have from Table 2: ${\left( {1 + x} \right)^a} = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} a\\ n \end{array}} \right){x^n} = 1 + ax + \dfrac{{a\left( {a - 1} \right)}}{{2!}}{x^2} + \dfrac{{a\left( {a - 1} \right)\left( {a - 2} \right)}}{{3!}}{x^3} + \cdot\cdot\cdot$ converges for $\left| x \right| \lt 1$. Substituting $\left( {\dfrac{{x - 4}}{4}} \right)$ for $x$ in the series above, we get $\sqrt {1 + \left( {\dfrac{{x - 4}}{4}} \right)} = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} {\dfrac{1}{2}}\\ n \end{array}} \right){\left( {\dfrac{{x - 4}}{4}} \right)^n}$, ${\ \ \ }$ converges for $\left| {\dfrac{{x - 4}}{4}} \right| \lt 1$ Thus, the Taylor series centered at $c=4$ is $T\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \left( {\begin{array}{*{20}{c}} {\dfrac{1}{2}}\\ n \end{array}} \right)\dfrac{2}{{{4^n}}}{\left( {x - 4} \right)^n}$. It is valid for $\left| {x - 4} \right| \lt 4$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.