Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - Review Exercises - Page 1036: 69

Answer

$${\sin ^2}\theta - {\cos ^2}\theta $$

Work Step by Step

$$\eqalign{ & x = u\sin \theta + v\cos \theta ,{\text{ }}y = u\cos \theta + v\sin \theta \cr & {\text{Find the partial derivatives }}\frac{{\partial x}}{{\partial u}}{\text{ and }}\frac{{\partial x}}{{\partial v}} \cr & \frac{{\partial x}}{{\partial u}} = \frac{\partial }{{\partial u}}\left[ {u\sin \theta + v\cos \theta } \right] = \sin \theta \cr & \frac{{\partial x}}{{\partial v}} = \frac{\partial }{{\partial v}}\left[ {u\sin \theta + v\cos \theta } \right] = \cos \theta \cr & {\text{Find the partial derivatives }}\frac{{\partial y}}{{\partial u}}{\text{ and }}\frac{{\partial y}}{{\partial v}} \cr & \frac{{\partial y}}{{\partial u}} = \frac{\partial }{{\partial u}}\left[ {u\cos \theta + v\sin \theta } \right] = \cos \theta \cr & \frac{{\partial y}}{{\partial v}} = \frac{\partial }{{\partial v}}\left[ {u\cos \theta + v\sin \theta } \right] = \sin \theta \cr & {\text{Calculate the Jacobian}} \cr & \frac{{\partial \left( {x,y} \right)}}{{\partial \left( {u,v} \right)}} = \frac{{\partial x}}{{\partial u}}\frac{{\partial y}}{{\partial v}} - \frac{{\partial y}}{{\partial u}}\frac{{\partial x}}{{\partial v}}{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Substituting the partial derivatives into }}\left( {\bf{1}} \right) \cr & \frac{{\partial \left( {x,y} \right)}}{{\partial \left( {u,v} \right)}} = \left( {\sin \theta } \right)\left( {\sin \theta } \right) - \left( {\cos \theta } \right)\left( {\cos \theta } \right) \cr & \frac{{\partial \left( {x,y} \right)}}{{\partial \left( {u,v} \right)}} = {\sin ^2}\theta - {\cos ^2}\theta \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.