Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - Review Exercises - Page 1036: 61

Answer

$$\frac{2}{3}{\pi ^2}$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /2} {\int_0^{\pi /2} {\int_0^2 {{\rho ^2}} d\rho d\theta d\phi } } \cr & \int_0^{\pi /2} {\int_0^{\pi /2} {\left[ {\int_0^2 {{\rho ^2}} d\rho } \right]d\theta d\phi } } \cr & {\text{Integrate with respect to }}\rho \cr & \int_0^2 {{\rho ^2}} d\rho = \left[ {\frac{1}{3}{\rho ^3}} \right]_0^2 \cr & = \frac{1}{3}{\left( 2 \right)^3} - \frac{1}{3}{\left( 0 \right)^3} = \frac{8}{3} \cr & = \int_0^{\pi /2} {\int_0^{\pi /2} {\frac{8}{3}d\theta d\phi } } \cr & = \frac{8}{3}\int_0^{\pi /2} {\int_0^{\pi /2} {d\theta d\phi } } \cr & {\text{Integrate with respect to }}\theta \cr & = \frac{8}{3}\int_0^{\pi /2} {\left[ \theta \right]_0^{\pi /2}d\phi } \cr & = \frac{8}{3}\int_0^{\pi /2} {\frac{\pi }{2}d\phi } \cr & = \frac{4}{3}\pi \int_0^{\pi /2} {d\phi } \cr & {\text{Integrate}} \cr & {\text{ = }}\frac{4}{3}\pi \left[ {\frac{\pi }{2} - 0} \right] \cr & {\text{ = }}\frac{2}{3}{\pi ^2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.