Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - Review Exercises - Page 1036: 62

Answer

$$\frac{1}{2}$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /4} {\int_0^{\pi /4} {\int_0^{\cos \phi } {\cos \theta } d\rho d\phi d\theta } } \cr & \int_0^{\pi /4} {\int_0^{\pi /4} {\left[ {\int_0^{\cos \phi } {\cos \theta } d\rho } \right]d\phi d\theta } } \cr & {\text{Integrate with respect to }}\rho \cr & \int_0^{\cos \phi } {\cos \theta } d\rho = \cos \theta \left[ \rho \right]_0^{\cos \phi } \cr & = \cos \theta \cos \phi \cr & \int_0^{\pi /4} {\int_0^{\pi /4} {\left[ {\int_0^{\cos \phi } {\cos \theta } d\rho } \right]d\phi d\theta } } = \int_0^{\pi /4} {\int_0^{\pi /4} {\cos \theta \cos \phi d\phi d\theta } } \cr & {\text{Integrate with respect to }}\phi \cr & = \int_0^{\pi /4} {\cos \theta \left[ {\sin \phi } \right]_0^{\pi /4}d\theta } \cr & = \int_0^{\pi /4} {\cos \theta \left( {\frac{{\sqrt 2 }}{2}} \right)d\theta } \cr & = \frac{{\sqrt 2 }}{2}\int_0^{\pi /4} {\cos \theta d\theta } \cr & {\text{Integrate}} \cr & = \frac{{\sqrt 2 }}{2}\left[ {\sin \theta } \right]_0^{\pi /4} \cr & = \frac{{\sqrt 2 }}{2}\left( {\frac{{\sqrt 2 }}{2}} \right) \cr & = \frac{1}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.