Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - Review Exercises - Page 1036: 60

Answer

$\frac{9}{2}\pi $

Work Step by Step

$$\eqalign{ & \int_0^{\pi /2} {\int_0^3 {\int_0^{4 - z} {zdrdzd\theta } } } \cr & = \int_0^{\pi /2} {\int_0^3 {\left[ {\int_0^{4 - z} {zdr} } \right]} dzd\theta } \cr & {\text{Integrate with respect to }}r \cr & \int_0^{4 - z} {zdr} = \left[ {zr} \right]_0^{4 - z} \cr & \int_0^{4 - z} {zdr} = \left[ {z\left( {4 - z} \right) - z\left( 0 \right)} \right] \cr & \int_0^{4 - z} {zdr} = 4z - {z^2} \cr & = \int_0^{\pi /2} {\int_0^3 {\left( {4z - {z^2}} \right)} dzd\theta } \cr & {\text{Integrate with respect to }}z \cr & = \int_0^{\pi /2} {\left[ {2{z^2} - \frac{1}{3}{z^3}} \right]} _0^3d\theta \cr & = \int_0^{\pi /2} {\left[ {2{{\left( 3 \right)}^2} - \frac{1}{3}{{\left( 3 \right)}^3}} \right]} d\theta \cr & = \int_0^{\pi /2} {\left( 9 \right)} d\theta \cr & {\text{Integrate}} \cr & {\text{ = }}9\left[ {\frac{\pi }{2} - 0} \right] \cr & {\text{ = }}\frac{9}{2}\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.