Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - Review Exercises - Page 1036: 67

Answer

$$ - 9$$

Work Step by Step

$$\eqalign{ & x = u + 3v,{\text{ }}y = 2u - 3v \cr & {\text{Find the partial derivatives }}\frac{{\partial x}}{{\partial u}}{\text{ and }}\frac{{\partial x}}{{\partial v}} \cr & \frac{{\partial x}}{{\partial u}} = \frac{\partial }{{\partial u}}\left[ {u + 3v} \right] = 1 \cr & \frac{{\partial x}}{{\partial v}} = \frac{\partial }{{\partial v}}\left[ {u + 3v} \right] = 3 \cr & {\text{Find the partial derivatives }}\frac{{\partial y}}{{\partial u}}{\text{ and }}\frac{{\partial y}}{{\partial v}} \cr & \frac{{\partial y}}{{\partial u}} = \frac{\partial }{{\partial u}}\left[ {2u - 3v} \right] = 2 \cr & \frac{{\partial y}}{{\partial v}} = \frac{\partial }{{\partial v}}\left[ {2u - 3v} \right] = - 3 \cr & {\text{Calculate the Jacobian}} \cr & \frac{{\partial \left( {x,y} \right)}}{{\partial \left( {u,v} \right)}} = \frac{{\partial x}}{{\partial u}}\frac{{\partial y}}{{\partial v}} - \frac{{\partial y}}{{\partial u}}\frac{{\partial x}}{{\partial v}}{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Substituting the partial derivatives into }}\left( {\bf{1}} \right) \cr & \frac{{\partial \left( {x,y} \right)}}{{\partial \left( {u,v} \right)}} = \left( 1 \right)\left( { - 3} \right) - \left( 2 \right)\left( 3 \right) \cr & \frac{{\partial \left( {x,y} \right)}}{{\partial \left( {u,v} \right)}} = - 3 - 6 \cr & \frac{{\partial \left( {x,y} \right)}}{{\partial \left( {u,v} \right)}} = - 9 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.