Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - Review Exercises - Page 1036: 49

Answer

$$\frac{1}{3}abc\left( {{a^2} + {b^2} + {c^2}} \right)$$

Work Step by Step

$$\eqalign{ & \int_0^a {\int_0^b {\int_0^c {\left( {{x^2} + {y^2} + {z^2}} \right)dx} } dy} dz \cr & \int_0^a {\int_0^b {\left[ {\int_0^c {\left( {{x^2} + {y^2} + {z^2}} \right)dx} } \right]} dy} dz \cr & {\text{Integrate with respect to }}x \cr & \int_0^c {\left( {{x^2} + {y^2} + {z^2}} \right)dx} = \left[ {\frac{1}{3}{x^3} + x{y^2} + x{z^2}} \right]_0^c \cr & = \frac{1}{3}{c^3} + c{y^2} + c{z^2} \cr & \int_0^a {\int_0^b {\left[ {\int_0^c {\left( {{x^2} + {y^2} + {z^2}} \right)dx} } \right]} dy} dz = \int_0^a {\int_0^b {\left( {\frac{1}{3}{c^3} + c{y^2} + c{z^2}} \right)} dy} dz \cr & \int_0^a {\int_0^b {\left( {\frac{1}{3}{c^3} + c{y^2} + c{z^2}} \right)} dy} dz = \int_0^a {\left[ {\int_0^b {\left( {\frac{1}{3}{c^3} + c{y^2} + c{z^2}} \right)} dy} \right]} dz \cr & {\text{Integrate with respect to }}y \cr & \int_0^b {\left( {\frac{1}{3}{c^3} + c{y^2} + c{z^2}} \right)} dy = \left[ {\frac{1}{3}{c^3}y + \frac{1}{3}c{y^3} + cy{z^2}} \right]_0^b \cr & = \frac{1}{3}b{c^3} + \frac{1}{3}{b^3}c + bc{z^2} \cr & \int_0^a {\left[ {\int_0^b {\left( {\frac{1}{3}{c^3} + c{y^2} + c{z^2}} \right)} dy} \right]} dz = \int_0^a {\left( {\frac{1}{3}b{c^3} + \frac{1}{3}{b^3}c + bc{z^2}} \right)} dz \cr & {\text{Integrate}} \cr & {\text{ = }}\left[ {\frac{1}{3}b{c^3}z + \frac{1}{3}{b^3}cz + \frac{1}{3}bc{z^3}} \right]_0^a \cr & = \frac{1}{3}ab{c^3} + \frac{1}{3}a{b^3}c + \frac{1}{3}{a^3}bc \cr & = \frac{1}{3}abc\left( {{a^2} + {b^2} + {c^2}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.