Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - Review Exercises - Page 1036: 59

Answer

$$12\sqrt 3 $$

Work Step by Step

$$\eqalign{ & \int_0^3 {\int_0^{\pi /3} {\int_0^4 {r\cos \theta } dr} d\theta } dz \cr & = \int_0^3 {\int_0^{\pi /3} {\left[ {\int_0^4 {r\cos \theta } dr} \right]} d\theta } dz \cr & {\text{Integrate with respect to }}r \cr & \int_0^4 {r\cos \theta } dr = \cos \theta \left[ {\frac{1}{2}{r^2}} \right]_0^4 \cr & = \cos \theta \left[ {\frac{1}{2}{{\left( 4 \right)}^2}} \right] \cr & = 8\cos \theta \cr & \int_0^3 {\int_0^{\pi /3} {\left[ {\int_0^4 {r\cos \theta } dr} \right]} d\theta } dz = \int_0^3 {\int_0^{\pi /3} {8\cos \theta } d\theta } dz \cr & {\text{Integrate with respect to }}\theta \cr & \int_0^3 {\int_0^{\pi /3} {8\cos \theta } d\theta } dz = \int_0^3 {\left[ {8\sin \theta } \right]_0^{\pi /3}} dz \cr & = \int_0^3 {\left[ {8\sin \left( {\frac{\pi }{3}} \right) - 8\sin \left( 0 \right)} \right]} dz \cr & = \int_0^3 {\left[ {8\sin \left( {\frac{{\sqrt 3 }}{2}} \right)} \right]} dz \cr & = 4\sqrt 3 \int_0^3 {dz} \cr & {\text{Integrate}} \cr & {\text{ = }}4\sqrt 3 \left[ {3 - 0} \right] \cr & {\text{ = }}12\sqrt 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.