Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - Review Exercises - Page 1036: 50

Answer

$$\frac{{27}}{2}$$

Work Step by Step

$$\eqalign{ & \int_0^3 {\int_{\pi /2}^\pi {\int_2^5 {z\sin x} dy} dx} dz \cr & = \int_0^3 {\int_{\pi /2}^\pi {\left[ {\int_2^5 {z\sin x} dy} \right]} dx} dz \cr & {\text{Integrate with respect to }}y \cr & \int_2^5 {z\sin x} dy = \left[ {zy\sin x} \right]_2^5 \cr & = 5z\sin x - 2z\sin x \cr & = 3z\sin x \cr & \int_0^3 {\int_{\pi /2}^\pi {\left[ {\int_2^5 {z\sin x} dy} \right]} dx} dz = \int_0^3 {\int_{\pi /2}^\pi {3z\sin x} dx} dz \cr & {\text{Integrate with respect to }}x \cr & \int_{\pi /2}^\pi {3z\sin x} dx = \left[ { - 3z\cos x} \right]_{\pi /2}^\pi \cr & = - \left[ {3z\cos \left( \pi \right) - 3z\cos \left( {\frac{\pi }{2}} \right)} \right] \cr & = - \left( { - 3z - 0} \right) \cr & = 3z \cr & \int_0^3 {\int_{\pi /2}^\pi {3z\sin x} dx} dz = \int_0^3 {3z} dz \cr & {\text{Integrate}} \cr & {\text{ = }}\left[ {\frac{3}{2}{z^2}} \right]_0^3 \cr & = \frac{3}{2}{\left( 3 \right)^2} \cr & = \frac{{27}}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.