Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.7 Rectilinear Motion Revisited Using Integration - Exercises Set 4.7 - Page 330: 31

Answer

(b) $2.1 \mathrm{s}$ (c) $5.5 \mathrm{s}$ (a) $-24.2 \mathrm{ft} / \mathrm{s}^{2}$

Work Step by Step

(a) We find: $88=v(t)=132+a t \Rightarrow -\frac{44}{a}=t$ $200=s(t)=-\frac{3872}{a}+\frac{1936 a}{2 a^{2}}=\frac{-4840}{a}$ $a=-24.2$ $s(t)=200, v_{0}=90$ $\mathrm{mi} / \mathrm{h}=132 \mathrm{ft} / \mathrm{s}, s_{0}=0$, $v(t)=60 \mathrm{mi} / \mathrm{h}=88$ $\mathrm{ft} / \mathrm{s}$ (b) Using the velocity function: $v(t)=132-24.2 t=80 \frac{2}{3}$ $\Rightarrow t=\frac{51 \frac{1}{3}}{-24.2} \approx 2.1$ Using (11) with $v(t)=55 \mathrm{mi} / \mathrm{h}$ $=80 \frac{2}{3} \mathrm{ft} / \mathrm{s}$ and $a=-24.2$, $v_{0}=132$ (c) $0=v(t)=132-24.2 t$ $\Rightarrow t=\frac{-132}{-24.2} \approx 5.5$ Using formula (11) with $v(t)=0$ and $v_{0}=132$: $a=$ -24.2
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.