Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.7 Rectilinear Motion Revisited Using Integration - Exercises Set 4.7 - Page 330: 15

Answer

The distance $=\frac{296}{27} m$ The displacement $=\frac{296}{27} m$

Work Step by Step

$$ \text { You have } a(t)=\frac{1}{\sqrt{1+3 t}}, \quad \frac{4}{3}=v_{0}, \quad 1 \leq t \leq 5 $$ We will find the velocity : $$ \begin{array}{l} v(t)=\int \frac{1}{\sqrt{1+3 t}} d t=\frac{2}{3} \sqrt{1+3 t}+C \\ v(0)=\frac{4}{3}=\frac{2}{3}+C \Rightarrow C=\frac{2}{3} \\ \therefore \frac{2}{3} \sqrt{1+3 t}+\frac{2}{3}=v(t) \end{array} $$ The displacement is : $$ s(t)=\int_{1}^{5}\left(\frac{2}{3} \sqrt{3 t+1}+\frac{2}{3}\right), d t=\left.\left[\frac{4}{27} \sqrt{(3 t+1)^{3}}+\frac{2}{3} t\right]\right|_{1} ^{5}=\frac{346}{27}-\frac{50}{27}=\left[\frac{296}{27} m\right] $$ The distance : $$ \begin{aligned} \int_{1}^{5}\left|\frac{2}{3} \sqrt{1+3 t}+\frac{2}{3}\right| d t &=\int_{1}^{5}\left(\frac{2}{3} \sqrt{1+3 t}+\frac{2}{3}\right) d t \\ &=\left[\frac{296}{27} m\right] \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.