Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.7 Rectilinear Motion Revisited Using Integration - Exercises Set 4.7 - Page 330: 19

Answer

To move $4 \mathrm{cm}$ from the starting position, the ant takes 1.27 seconds.

Work Step by Step

The velocity of an ant running along the edge of the shelf has been modeled by the function: \[ v(t)=\left\{\begin{array}{cc} 6 \sqrt{t}-\frac{1}{t} & 1 \leq t \leq 2 \\ 5 t & 0 \leq t<1 \end{array}\right. \] We will find the time $t_{0}$ at which the ant is $4 \mathrm{cm}$ from its starting position. If we assume that $t_{0} \leq 1$ \[ \begin{aligned} \therefore s(t) &=\int_{0}^{1}(5 t) d t=\left.\frac{5 t^{2}}{2}\right|_{0} ^{1}=\frac{5}{2} \\ \therefore & s\left(t_{0}\right)=\frac{5}{2} \approx 2.5 \end{aligned} \] So, the time will be $t_{0}>1$ If $t_{0}>1$ \[ \begin{aligned} \therefore s(t) &=\int_{0}^{t_{0}} v(t) d t \\ &=\int_{1}^{t_{0}}\left(6 \sqrt{t}-\frac{1}{t}\right) d t+\int_{0}^{1} 5 t d t \\ &=\left.\frac{5 t^{2}}{2}\right|_{0} ^{1}+\left.\left(-\ln t+4 t^{\frac{3}{2}}\right)\right|_{1} ^{t_{0}} \\ &=\frac{5}{2}+\left(-\ln t_{0}+4 t_{0}^{\frac{3}{2}}\right)-4 \end{aligned} \] \[ \begin{aligned} &=\int_{1}^{t_{0}}\left(6 \sqrt{t}+\int_{0}^{1} 5 t d t-\frac{1}{t}\right) d t \\ &=\left.\frac{5 t^{2}}{2}\right|_{0} ^{1}+\left.\left(4 t^{\frac{3}{2}}-\ln t\right)\right|_{1} ^{t_{0}} \\ &=-4+\frac{5}{2}+\left(4 t_{0}^{-\ln t_{0}+\frac{3}{2}}\right) \\ &=-\frac{3}{2}-\ln t_{0}+\left(4 t_{0}^{\frac{3}{2}}\right) \\ s\left(t_{0}\right)=4 &=\left(4 t_{0}^{\frac{3}{2}}-\frac{3}{2}-\ln t_{0}\right) \\ \therefore -\ln t_{0}+4 t_{0}^{\frac{3}{2}} &=\frac{11}{2} \end{aligned} \] We find: \[ t_{0} \approx 1.27 \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.